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LETTER TO THE EDITOR 

Weak singularity and absence of metastability in random 
Ising ferromagnets 

Andris SutB 
Central Research Institute for Physics, H-1525 Budapest 114, POB 49, Hungary 

Received 17 August 1982 

Abstract. In the above models there exists a weak singularity of the magnetisation, in 
addition to its jump, on the first-order transition line. It corresponds to the Griffiths 
singularity above the temperature of the phase transition. Analytic continuation from 
positive to negative magnetic fields, yielding a metastable state, is impossible. 

The van der Waals and mean-field theories (see e.g. Brout 1965), in particular the 
analysis of the positive solution M ( h )  of the mean-field equation M = tanh (aM + h )  
for a > 1 and h 3 0 provide examples that thermodynamic functions can be continued 
analytically to a metastable region. However, this possibility was questioned, on very 
general grounds, for systems with short-range interactions (Lanford and Ruelle 1969). 
Droplet-model calculations (Langer 1967, Fisher 1967) exhibit an essential singularity 
of the free energy as a function of the external field h, on the first-order phase transition 
line {(T, h): T < T,, h = 0)  (T denotes the temperature). The singularity in the droplet 
model permits the analytic continuation around the point h = 0, and the metastable 
free energy can be interpreted as the real part of the (complex) analytic continuation 
for h CO. The inclusion of 'ramified' clusters (surface per volume -0(1)) in the 
droplet model (Domb 1976, Klein 1981) introduces branch point singularities inter- 
preted as spinodals, and may eventually shift the essential singularity to negative 
external fields (Domb 1976), thus giving space to a 'true' metastable domain. 

My aim is to compare the above picture with that inferred rigorously from random 
dilute Ising ferromagnets. It will be seen that in the latter models (i) there is a weak 
(i.e. C") singularity on the first-order transition line which blocks the analytic continu- 
ation through h = 0, and (ii) most probably analytic continuation around h = 0 is 
impossible or if it is possible then it leads to the stable equilibrium state. These 
findings agree with the expectation that metastability can be induced only by confining 
the system in a part of the phase space (Penrose and Lebowitz 1971); indeed, this is 
implicit in the droplet model but not in our case. 

The model I am considering is defined by the Hamiltonian 

H = -1 JijSiSj 

where the summation goes over the nearest-neighbour pairs of a d S 2  dimensional 
lattice and Jii are random ferromagnetic couplings. In the case of site dilution, Jij = vcpj 
where ri = 1 or 0 and prob (vi = 1) = p, independently of (Tk, k # i. In the bond diluted 
model, Jii = 1 or 0 with probability p and 1 - p ,  respectively, and independently of the 
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other bonds. Above one dimension and for p sufficiently close to 1, there is a critical 
temperature TJp) 3> 0 below which magnetic ordering appears. 

Recently Georgii (1981) has shown that in the square lattice model T J p )  is positive 
for any p above the percolation threshold p,=0.590 (site) or P b  = 1/2 (bond); Tc(p) 
is positive also in higher dimensions if p is greater than the corresponding two- 
dimensional critical probability, p s  or pb.  Griffiths (1969) revealed that the magnetisa- 
tion is not an analytic function of h at h = 0, at any temperature below Tc(l) and for 
any 0 < p  < 1; he gave the proof of this statement for p <p,(d) (the critical probability 
for percolation). It is obvious that at T < Tc(p )  the magnetisation is non-analytic in 
h at h = O  because it has a jump. A mere jump would still permit the analytic 
continuation through h = 0. As we see, however, this is not the case. 

Theorem. Consider the site-diluted model (1) in an external field h, i.e. 

H = -1 aZqjSiSj - h aiSi. (2) 

For any 0 < p  < 1 and T < Tc(l) the quenched magnetisation per site (and therefore 
the quenched free energy) cannot be continued analytically from h > O  to h < O  and 
vice versa, through h = 0; although there is some p o  2 p s  and for each p > p o  some 
To(p)  s Tc(p) such that for p > p o  and T < To(p)  all the one sided derivatives, at h = 0, 
of the magnetisation exist. 

Proof. Let A be a regular (cubic) domain of the lattice. The quenched magnetisation 
per site is the field derivative of the quenched free energy and it reads as 

The bar in this formula indicates averaging for all ai with i taken in A, and (Si),, is 
the expectation value of Si for a given set a. Here we assume the free boundary 
condition (ai = 0 for i outside A) and lAl is the number of sites in A. A connected set 
is an ensemble of sites which are linked together through the edges between the 
nearest-neighbour pairs within this set; a set C of sites is a cluster if it is connected, 
fully occupied (i.e. gi = 1 for i in C) and is not connected to any other occupied sites 
(i.e. ai = 0 for i in aC, the set of nearest neighbours to C). With these definitions, 

where the summation goes over all translationally non-equivalent connected sets of 
A, Mc is the average magnetisation per site in C taken with free boundary condition 
and PC,* is the probability that A contains a cluster translationally equivalent to C. 
Now let z = exp(-2h/T); the interaction (i.e. temperature) dependence of M c ( z )  can 
be expressed through the zeros, c i ,~ ,  of the cluster partition function 2 , - ( z ) .  Now 

= 1 (Lee and Yang 1952) and mh is given as 
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Here NA is the number of the possible zeros and vj(A) = PC,,,/lAl if ti = &,c for some 
i. In ( 5 )  we used the fact that E&=,, Pc,,,lC1/lAl = ZFl v i (A)  = p .  This and the existence 
of limA mA for real h ensures that lim,, fA(z) defines an analytic functionf(2) for Iz I # 1. 
We show that f ( z )  cannot be continued analytically on the real axis from z > 1 to 
z < 1 if T < Tc(l). For, supposing the opposite, there would be some x > 1 and S > 0 
so that the disc of convergence of the Taylor series of f(z) about z = x would contain 
an arc, A = {exp(icp): Icp I < S} in its interior. Now T is below the critical temperature 
of the non-diluted model, therefore on an increasing sequence of fully occupied cubes 
C, the sets of zeros {[i,c,} accumulate to z = 1 as n goes to infinity. Let C,,, be so 
large that E A for some j .  For any A 3 C,,,, [j,c, = (k will be found among the 
poles of f,,(z). It is seen that l 'c ,A/lAl  tends to PC =ptCI(1 -p)lJcI as A tends to the 
infinite lattice; in particular, there is some A. 3 C,,, so that vk(A) 2 Pc,/2 if A 3 A,. 
Let now & = exp(icpk) and, for r > 1 real, rtk -ej = rkj exp(icpkj) where rkj = Irek -ei/ > 0. 
From the convexity of the unit circle it follows that l q k  -cpkjl C &r and hence 

for any A 2 A,. This shows that f(rek) diverges if r decreases to 1, contradicting the 
supposed analyticity on A .  A similar divergence can be found if r < 1 increases to 1 
as a consequence of the equality mA(z) = -mA(Y1) .  

As to the second part of the theorem, for p >po(d )  = (1 -iZd)*'2 and for T low 
enough one can show, by an 'averaged' Peierls argument, the exponential decay of 
the truncated correlations and, following Martin-Lof (1973), the stated C" property. 

A few comments are necessary to this result. It constitutes a re-derivation of the 
Griffiths singularity if p < pc(d)  and Tc( p )  < T < Tc( 1). Equation (6) is a close analogue 
of the formula (3) of Griffiths (1969). The difference is that the infinite clusters are 
included in the present treatment: they occur for p >pc (d ) .  The domain p > p c ( d ) ,  
T c ( p )  < T < Tc(l) is still that of the Griffiths singularity; the singularity, superposed 
on the jump of the magnetisation, appears below Tc(p). We cannot separate the jump 
and the excess singularity: it is probably not true that only the finite clusters provide 
the essential singularity and the infinite clusters add a pure jump to it (this would 
mean metastability in the non-diluted model). The estimated domain where the 
singularity is of C", is rather poor. For two dimensions, p0(2)=0.9938. It seems 
probable that the infinite differentiability is true for the whole domain of p and T 
where the singularity occurs. The bond problem can be treated quite analogously; in 
this case we obtain p o ( d )  = 3.  

Chances for the analytic continuation around h = 0 (i.e. z = 1) are weak. A 
mean-field calculation and series expansions show (Kortman and Griffiths 197 1) that 
the zeros are everywhere dense on the unit circle, therefore the same kind of singularity 
can be found in each point of this circle. Assuming nevertheless that there is an arc 
free of zeros, the analytic continuation through this arc from a z = Re z1 > 1 to a 
2 2  = Re 2 2  < 1 would inevitably yield the stable equilibrium magnetisation at z2, instead 
of a metastable one. 

I would like to thank J-J Loeffel, H Kunz and Ch Pfister for many enlightening 
conversations on the Griffiths singularity, and R B Griffiths for a correspondence on 
this subject. I am indebted to W Klein who directed my attention to the problem of 
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the weak singularity in first-order phase transitions. I also would like to thank the 
Institut de Physique ThCorique, Universite de Lausanne for the kind hospitality I 
enjoyed there during my stay in Lausanne. 
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